Расчет выработки электроэнергии солнечными модулями

Условия задачи:

Определить характеристики солнечного модуля (СМ) типа PSM4-150 на кремниевых монокристаллических солнечных элементах и рассчитать его К.П.Д. в зависимости от мощности. Рассчитать выработку электроэнергии солнечной батареей, состоящей из m модулей на площадке, расположенной под углом β к горизонту для заданного месяца. Определить процент валового потенциала солнечной радиации, используемого солнечным модулем на 1 м² этого модуля.

ДАНО:

Тип солнечного модуля - PSM4-150 Расчетный месяц — июль Температура окружающей среды $T=+20^{\circ}C$ Угол наклона CM к горизонту $\beta=58^{\circ}$ Количество модулей m=3 Уровень освещенности $R=800~Bt/m^2$ Данные для решения задачи приведены в Приложении к задаче 3.

Методика расчета

1. К.П.Д. одного солнечного модуля определяется:

$$\eta = \frac{P}{P_{non}}$$

где P — мощность, определяемая по вольт-амперной характеристике (BAX) солнечного модуля (Рис. П 3.2. Приложения к задаче 3).

Для этого BAX с заданным уровнем освещенности разбить на участки. Данные для удобства расчетов рекомендуется внести в таблицу, отметив точки холостого хода $U_{x.x.}$ и короткого замыкания $I_{\kappa.3.}$

Результаты расчета основных энергетических характеристик СМ

	1				<u> </u>		
I, A	I _{к.3.}	•••	•••	• • •	• • •	•••	0
U, B	0						$U_{x.x.}$
P, BT							
η, o.e.							

Полезная мощность P_{non} определяется:

$$P_{non} = \mathbf{R} \cdot \mathbf{F}_{CM}$$
, $\mathbf{B}\mathbf{T}$,

где R – уровень освещенности (по условию задачи), $Bт/м^2$ (Приложение, рис.П.3.2); F_{CM} – площадь солнечного модуля, которая определяется по выражению:

$$F_{CM} = F_{C\ni} \cdot n \cdot K_{_{3an}} \quad , \, \mathbf{M^2}$$

где $F_{C\ni}$ – площадь одного солнечного элемента (CЭ), M^2 ; n – количество солнечных элементов в модуле; K_{3an} – коэффициент заполнения солнечными элементами площади солнечного модуля. Значения $F_{C\ni}$, n и K_{3an} взять из Приложения.

По данным таблицы построить зависимость $\eta = f(P)$. Определить максимальное значение К.П.Д. при соответствующем значении мощности.

2. Выработка электрической энергии солнечным модулем в июле месяце определяется:

$$\Theta_7 = \Theta_{\scriptscriptstyle BBT} \cdot F_{\scriptscriptstyle CM} \cdot m \cdot \eta_{\scriptscriptstyle K} \cdot K_{\scriptscriptstyle t} \cdot \eta_{\scriptscriptstyle \Delta P} \cdot \eta_{\scriptscriptstyle \Delta \Theta}$$
 , к $_{\scriptscriptstyle BTY}$

где $\Theta_{вал}$ — валовой удельный приход солнечной радиации на рассматриваемую площадку, кВт· ч/м² (табл.П. 3.2); m — количество модулей в солнечной батарее; η_K =11,3% максимальный К.П.Д. кремниевого солнечного элемента (берется в о.е.); K_t =1,47 — коэффициент, учитывающий влияние температуры солнечного модуля на его К.П.Д.; η_{AP} =0,97, $\eta_{A\Theta}$ =0,9 —соответственно потери мощности, определяемые последовательным соединением элементов и передачей энергии до потребителя.

Полученное значение выработки электроэнергии округлить до целого значения.

3. Процент использования валового потенциала определяется отношением полученной выработки электрической энергии солнечным модулем на 1м² модуля к валовому удельному приходу солнечной радиации для июля месяца.

$$H = \frac{\Im_{_M}}{\Im_{_{6an.7}}} 100\%$$

где $Э_{M}$ – выработка электроэнергии на $1 M^{2}$ модуля, определяется:

$$\Theta_{\mathrm{M}} = \frac{\Theta_{7}}{F_{\mathrm{CM}} \cdot m}$$
, к $\mathrm{BT} \cdot \mathrm{Y}$

Полученный результат округляем до десятых.

4. Сделать вывод о целесообразности использования солнечных модулей для получения электрической энергии за рассматриваемый период.

Приложение к задаче 3

Рис.3.1. Общий вид солнечного модуля PSM4-150

Таблица 3.1. Характеристика фотоэлектрического модуля PSM4-150 на основе монокристаллического кремния

Характеристика	Значение	
Общая площадь модуля в корпусе	$1,28 \text{ m}^2$	
Масса, кг	19	
Лицевая поверхность	стекло марки М1 (4мм)	
Рама	крашеный алюминий	
Солнечные элементы	ФЭП 125/150	
Количество элементов	72	
Форма элемента	псевдоквадрат	
Размеры элемента	125 х125 мм.	
Стандартная температура солнечного элемента	25°C	

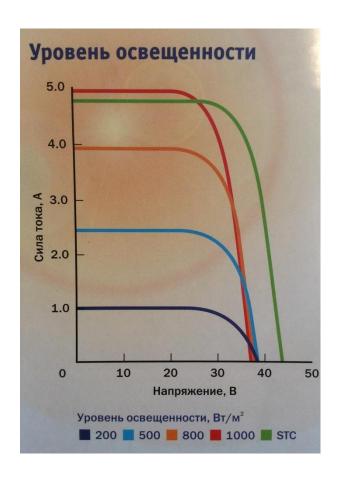


Рис.3.2. Вольт-амперная характеристика (BAX) солнечного модуля PSM4-150

Исходные данные для расчета

Таблица	3.2.

1	Уровень освещенности, R	$800~\mathrm{BT/M^2}$
2	Коэффициент заполнения модуля, Кзап	0,97
3	Валовой удельный приход солнечной радиации	145,2 кВт∙ ч/м²
	на рассматриваемую площадку, Эвал	
4	Градиент изменения К.П.Д. солнечного	0,094
	элемента от изменения температуры, α .	

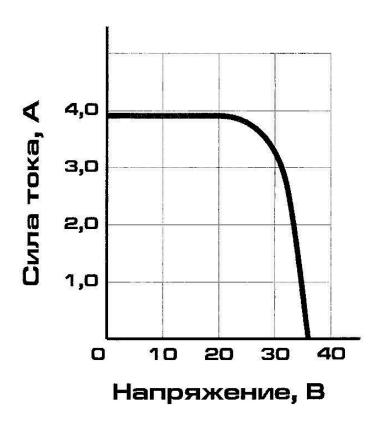


Рис.3.3 - Вольт-амперная характеристика (BAX) PSM4-150 при уровне освещенности $800~\mathrm{Bt/m^2}$