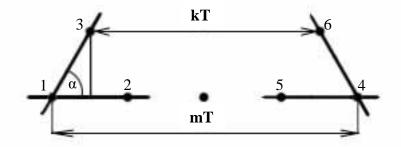
Derivation of types of rotation axes in crystal structures

(for better understanding the completion of the full course is recommended)



Suppose that points 1, 2, ..., 5, 4 are translationally equivalent. The distance between points 1 and 4 is equal to mT, where T is the length of translation and m is the number of translations.

Suppose that an n-fold rotation axis goes through the point 1 perpendicular to the plane of the picture. Rotating the point 2 counterclockwise around that axis on an angle α one can derive the point 3.

As the point 4 is translationally equivalent with the point 1, the n-fold rotation axis goes through the point 4 the same way, as through the point 1. Rotating the point 5 clockwise (rotation axes can rotate in both directions) around that axis on the same angle α one can derive the point 6.

As points 3 and 6 were derived from translationally equivalent points by the action of the same symmetry operation, they are also translationally equivalent. Thus, points 3 and 6 are located at the distance of the whole number of translations kT from each other.

m, k – whole numbers. mT – 2Tcos α = kT m – 2cos α = k 2cos α = m – k, thus, 2cos α is a whole number. 2cos α = z, where z is a whole number. cos α = z / 2 |cos α | \leq 1, consequently, |z / 2| \leq 1, |z| \leq 2.

Let's analyze all the possible values of z and the corresponding values of angles α and the types of rotation axes n.

Z	-2	-1	0	1	2
cosα	-1	-1/2	0	1/2	1
angle α	180°	120°	90°	60°	$0^\circ \equiv 360^\circ$
axis n	2	3	4	6	1

Thus, only five types of rotation axes are possible in crystal structures: 1, 2, 3, 4, 6.